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ABSTRACT

The purpose of this paper is to present a gene-
ral approach to the problem of the minimum mass
design of structures which are required to satisfy
constraints of a dynamic or aeroelastic nature.

A finite element idealization is employed for
this purpose, and the governing non linear equations
are solved by an iterative procedure via Pontryagin
principle.

Several typical structures are studied as exam-
ple problems to illustrate the computational algo-
rithm.

1. STATEMENT OF THE PROBLEM
The overall dimensions of the structure, and
its specific nature (beam; plate; rod; shell; truss,

etc.), are given. It is required to find structural
thicknesses u(k = 1,2,...N) of the elements E
into which the structure is ideally subdivided.

Let xk(uk) be the weight of E , and denote
by x the vector of the xis, by U the vector
of the ugs. It is required to find U 1in such a

way that the total weight:
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In Eq. (2) W, 1is the r-th state
r Aare matrices depending on the

and on some specified or unspecified
1’ m2 celg -

The matrices A correspond to the particular
behaviour that is wanted to be reproduced in the
structure. As seen, therefore, the paper is concerned
with linear behaviour, although no real further se-
rious difficulties would arise in considering non
linear behaviour. Furthermore, we confine ourselves
to examine homogeneous problems, which include how-
ever some of the most significant structural featu-
res, such as, f.i., free vibrations, Euler's load,
aeroelasticity, and so on.

In addition, in problems of real engineering
controls have upper and lower limitations. If we
stipulate, for two vectors a,b, that a > b means
that no component of b can exceed the correspon-
ding component of a , we have two given vectors
U', U", such that:
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since, in general, different limitations may be va-
lid for different elements.

2. OPTIMALITY EQUATIONS

For optimality, Egs. (1), (2) are equivalent
to find the minimum of the functional:

£ T
B, =l A, W (4)

1
where each of the Lagrange multiplier vector A
must be consistent with the vector equation:

T
PR ; = ...
Ar g 0 r 1T R (5)
Obviously, since (2) implies that A must be
singular, Eq. (5) provides nontrivial values for
Ar . Eg. (4) can be written:

i =]H (6)
where H 1is the Hamiltonian vector, whose k-th
component is given by

R N
= W ; =
Be = % * ;r By Bytgiy Mool & = Loyl
(7)
It is known [Bibl.l] that minimizing of Ha is

equivalent to minimizing of every Hp. In other words,
among all states and all Lagrange multipliers satis-
fying (2) (5), the optimal solution is the one for
which every Hp 1is a minimum. This is particularly
important in view of bounded controls.

3. CONSERVATIVE FORCES

For many important problems, the sStructure is
subjected to conservative forces only. This happens,
f.i., in free vibrations analysis where we have two
definite positive quadratic forms for each mode of
vibration:

e

T
— W_G W

L= 2 r r

L-WT MW and 2 =
r 2 ~E b o r

where both mass-matrix M and stiffness matrix G
are symmetric. If we prescribe some frequencies

Wy m2, ...mR, so that R =S, Egs. (2) read now
(G - mi M W =07 r=1,...R (8)
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T 3
so that A = A , and comparison of Egs. (2) (5)
yields:

Ar=wr, e N e T (9)
an unessential multiplying factor excepted. It is

obvious that the property (9) is characteristic of
all linear processes, whether they be free vibra-
tions, or not. Therefore, the Hamiltonian vector

H reads now:

+
e =R Y ote by Bk Yoon Yol ()
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4. ILLUSTRATIVE EXAMPLES

In several problems of aerospace structural
engineering one has to deal with "sparse"”
that are subjected to in-field constraints and to
boundary conditions. Thus, the problem of solving
such structures is essentially a boundary value
problem, that can be transformed into an initial
value problem,
number of initial constants are taken as unknown,
and adjusted until the final conditions are met.

In structural optimization we may adopt a si-
milar criterion. We start from one side of the
structure, with the values which are prescribed,
and with an additional number of constraints which
allow to transform the problem into an initial va-
lue cne. At every step, or at every gridpoint, we
take a decision, in such a way that Hy (T  is
a minimum in the allowable range of the control:
it is very important to remark however that such
decisions are to be taken solely on the basis of
already computed values.

We arrive at the other end of the structure.
If the final conditions are not satisfied, we try
to change the initial guess values.Several nuwerical
techniques have been developed for this purpose,
the most popular of which is the so-called "shoot-
ing technique" [Bibl. 2].

Let us now consider in detail the following
illustrative problem (Fig. 1): the torsion of

a rod, consisting of N elements of rigidity
Bk(k =0,1...N - 1)* separated by flywheels of iner-
tia Jy; for each of them the equilibrium equation,

for the generic mode of frequency w , reads:

8 - 8 ) -0
e k k-1 Kkl k
= =w 36 + B - B =0 (11)
k k'k K=1 Lk-l k Lk
k=1, . N-1
with the boundary conditions:
61-60
= e = =
wo w Joeo BO Lo + BO 60 0
8 -8 (12)
e N N-1 .
wN w JNeN + BN_l T i BN GN (0]
N-1
(*) Here we number elements from O to N~1, and not

from 1 to N as said in Art.-1, since we may let
the step approach zero, and so the zero-th element
will correspond to x = O

wl

structures,

if the values of a comparatively small

41}

where Bo’ BN , are the end-constraint rigidities

We assume that only one frequency is given,
so that Egs. (11) (12) are the only constraint.
The optimality functional:

N-1

N-1
i 2k Mt S Vi (13)
(o] (o]

can be written by using Egs. (11) (12) and rearran-

ging them in such a way to obtain the Hamiltonian
vector, whose components are now:

6 -6
- -} k+l k,»
w Jkek + B L (—-*Lk )+

Hk = ukLk

i koBo [¢] & o

8 By OF

where

§ = Kronecker's delta i k = 0,...N

We assume for the sake of giving a simple
example, that B and J depend solely on
uy in some specified way.

We start from the first of Eq. (12), which
involves 84, 61. We first remark that we can-
not prescribe both of them arbitrarily since, as
the state vector must be consistent with the state
equation, this would mean a nonoptimal choice of

u, based on Eq. (12). We must write Eq. (12) as:

By e, - =
(BO wJo)eo TO 0 (15)

and provide another arbitrary relationship between

60, T,i as an example, for 80 = = , that implies
60 = 0, we can select arbitrarily T, . With these
values we enter Eq. (14) for k = 0

H = (16)

L
2 2 © 2
+ - B2 o=
[o] uoLo (Bo o Jo) o Bo To

and determined the optimum for uo

We may now pass to the in-field process, de-
fined by the recursion process:

= S
Tk = Tk—l w Jkek
e ST S Wl O,

ukLk w Jkek + e Tk min (17)
L
k

S SR AL T
k

We determined successively u ;U
T » . uN 6 If thHis iast

set o% values 1s nog con51stent with the second of
Egs. (12) we must change the value of the arbitrary
constant given at the beginning until it is satis-
fied. As said, this can be obtained through a
shooting technique, whose numerical principle is
essentially similar to Newton-Raphson procedure
and needs not to be recalled here.



For a continuous structure, we have L - dx ;
T = j(x)dx, etc. The Hamiltonian vector becomes
the Hamiltonian function
2
= T
H(x) = u(x) - w2] 82 + “ (18)
where
de
T =R ax (19)

The process 1is essentially the same as des-
cribed by Egs. (17), where however the first of
them should be replaced by more sophisticated in-
tegration formulas, for a better truncation error.
We note however that combining Egq. (19) into (18)
is illegal, for this would mean that we select a
relationship between 6 and 60 + (d46/dx)dx,
equivalent, as already noted, to a nonoptimal choice
for U,

As a second example, we consider the case of
Fig. 2, which is essentially the same of Fig. 1,
with the only difference that now the structural
elements are beams, of rigidity EI, . We denote
by wy the deflection of the mass Mk , and by

%y its rotation. The equations of equilibrium are
written:
L L
k k-1
o i, e &
T 3T % N1 Y T T ks
3F
BN it ! L + P + i ¢, = (20)
k b
T 2 S S VT
k
. 6ET, !
L2 k-1
k-1
where:
4
Ldig 12EI % A ET, AR ¢k+l)
k 3 k+1 K"t Tk L k"2
L k
k
(21)

We assume, for sake of giving a simple example,
to haveito do with a simply supported beam, so the
pboundary conditions to Eqs. (20)are:

¢l
Wil g = g (22)
¢
N-1
= ; = - 2
- e oy 2 (23)
The Hamiltonian vector is now written:
12ET 4EIk
= - & 2462 4
o el e o3 Pl L T ]
k
12ET1
i s 2
B iy e WY Gy g I s
L2
k
and, by introducing the notations (21), it can

be written:

vl

n

E] 2
L 12EI L=F
T e e B S Wiy SRR i Tk -
k k'k lZEIk k Lk k EIk k ZEIk
- wZM w2 (25)

s e 2R

influence on
start by gi-

having deleted terms which do not have
the optimal choice. Here again we must

ving arbitrary values to V_ , ¢o and determining
u_ from (24),H =min. Then we are ready for the in-
field process, defined by Egs. (20) (25) (21) in

the order. If wy, ¢y are not consistent with (23)
we have to change V until such conditions
are fullfilled.

or Yor

Again, the following considerations may be
applied to the continuous structure defined by:

4%r
— = uluw
ax?
2
F P fii2
= — - A\ 26
H u + BT weu (26)
2w
F=ET ==
dx?
and the verification that, as L, - 0, Egs. (20)

(21) (25) approach Egs. (26) is left to the reader.
Again, of course, in actual computations, more so-
phisticated processes of numerical integration
should be introduced. If also a constant axial
compressive load P 1is acting on the structure,
Egs. (26) may be generalized to yield:

a%r
wf
2

F 2 i@ 2
3= + == W uw- + Pw
b EI s

wzpw - Pw"

(27)
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5. NUMERICAL RESULTS

The above described procedure was applied
to some specific numerical cases(l) | Fig. 3
refers to the optimum thickness distribution for
torsional vibrations (or aeroelastic divergence)

of a rod with B = U,j = 1 (Eg. 18), when w = w/2
is the giver eigenvalue.
No upper bound is prescribed (U" = «); the

computed optimum thickness refers to several dif-
ferent lower bounds U' . The horizontal straight
line labelled U 1 corresponds to the nonoptimal
constant thickness distribution. Each distribution
has an initial curved arc, followed by a constant
arc; transition points, for every value of U' are
described by the line AC.

3 The results of Fig. 3 three 9 are taken from
Ref. 3 the presentation of them is due to the cour-
tesy of "L'Aerotecnica, Missili, Spazio". In this
number, U=u.



For the same case, further results are given
in Fig. 4. Here we have a variation of maximum
thicknesses, (max U), transition point (x*), total
weight (II) vs. U'.

The Il curve is very interesting. It can be seen
that the maximum weight economy is obtained as one
allows minimwn thickness to go to zero, and such a
maximum economy is of 18%.

Fig. 5 refers to the same problem of Fig. 3, 4
when an upper bound (U" = 1) is prescribed. The op-
timun thickness of Fig. 5 has now two transition
points, x* and x**, whose values are shown in Fig. 6,
together with the total weight Il , again compared
with the constant, nonoptimal, value I = 1. The
weight economy is now less than in the unbounded
case; thus, imposing an upper limit reduces struc-
tural ligthness, but the results are doubtlessly
more meaningful from a practical point of view.

The resultsof Fig. 7, 8 refer to another case
of vibrating where now the thickness U enters also
in the mass distribution. For the constant thickness
the eigenvalue under concern would be w = n/§/4 .
for which the optimum distribution of Fig. 7 have
been calculated for the various minimal thickness,
while the upper bound has been kept constant and
equal to unity.

For sake of comparison, also some more general
cases were treated. Fig. 9 summarizes the results
for a vibrating rod with B = A(x)U; j = B(x)+Ua(x),
for some expressions of the functions A, B,a.

On the right hand vertical straight line, it
is possible to read the values of the total weight
of the cases considered in the example.

We shall now consider the case of a fourth or-
der equation. Fig. 10 refers to Euler's column which
actually can be treated as a second-order equation.
The analysis was done for the sake of comparison and
check of the method on multi-constant approach. Fig.
11 gives for the same structure maximum thickness
and optimal weight: obviously, as U' approaches uni-
ty, both curves shall approach unity too. Fig. 12
provides similar results for constant fixed lower
bound (U' = 0.1) and with several uppe: limits.

The group of Figs. 13, 14, 15 refer to an actu-
al fourth-order equation. Here we have to do with
a simply supported vibrating flexural beam with
EI =U3; P=0; U=U; w =T, no upper bound, seve-
ral lower bounds. As is seen, Fig. 13, the thick-
ness distribution, is almost entirely nonsensitive
to the minimal thickness imposed; except, of course,
the regions where the thickness would be less than
the prescribed value. This impression is substan-
tiated by Fig. 14, where it can be seen how small a
gain in weight can be obtained by reducing minimal
thickness.

Finally, Fig. 15 refers to the same structure
of Figs. 13, 14 where now we impose a fixed lower
bound (U' =.1) and several upper bounds. The dis-
tribution is seen now to be much more sensitive
to u".

i
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6. NON CONSERVATIVE FORCES

For non-conservative forces, the matrix A
is not symmetric, and the property (9) does not
hold. Therefore, we must shoot a double number of
initial constants.

We refer, in particular, to aeroelasticity,
a typical problem of which is to determine an opti-
mum weight structure when critical dynamic pressure
is given. Here we have:

(6 -~ w?™ + 0 LIW =0 (28)
where o is the dynamic pressure parameter, and

L 1is the aerodynamic matrix. The complete set of
equations defining the problem is now, in addition

to Eqg. (28):
2 Ty
[G - uM + OCL JA =0 (29)
and o
u+ A [6 - wiM 4+ o _LIW = opt. (30)
A = Det[G ~ w’M + o Ll = 0;
(31)
da
—) =0
dw?
It is seen therefore that now also the para-
meter w is unknown, and there is the further

condition (31).

The shooting technique may be employed also
in this case. To visualize this, let us consider
again the structure of Fig. 2, where now also an
aeroelastic piston-theory pressure is acting. The
equation valid in the generic k~th element of the

structure between masses My and Mg,y 1s now:
éiﬂ.+v3 aw _ o . ( < x < x. ) (32)
W Uk dx i )k =% Z%n
dx
o - T
where vi SR and for the Lagrange multiplier
k

A{x), we have the equation:

da

a*x 3 o 4
& B

v, (x
dx“ K

e S X i_xk+l)(33)

By solving Eq. (32) with the values of w and
dw/dx at the ends of the element, we can write the
equation of equilibrium for the k-th mass under the
form:

wk+1”£10) 2 wk[”£00)" ”éii)] a2 wk—lné?i) ¢k+leé10)+
£ ¢k[e£00)— eiii)] & ¢k-10£?i) iy

wk+18£10)+ wk[EQOO)' Eiii)] ¥ wk—laé?i) ¢ ¢k+151(<10)
: ¢k[ci60)' iii)] (5 ¢k—lcé?i) =uft

(34)



The coefficients are given in the Appendix. Suffice
here to say they are functions of vk.
A similar equation holds for the Lagrange mul-
tiplier yp of the first of Egs. (34) and for the
Lagrange multiplier Ak of the second of Egs. (34),
where however the coefficients are calculated for

~Vi instead of Vk - The Hamiltonian reads now:
B ALy (10) _(00) (10) . . (00)
S I e M ) Y% PN )
(11) (01) (11) (01)
AR etk UG TR il R
(10) (00) (10) (00)
R Sl G G )
(11) (o1) (11) (01).
SR s e S thahe RG]
(35)
We solve Egs. (34) for w43 o ¢k+l in terms

of updated state quantities, and coefficients de-
pending on Iyp. Similarly we solve the correspon-
ding equation for Ak+l' Up41 7 now we can enter
Eg. (35) that contains only urdated quantities and
Ix, ug, M. Here we can take the optimum decision;
obviously, in this case, we must "shoot" four ini-
tial constants. The procedure is the same as des-
cribed at n. 4.

It is left to the reader to check that all the
expressions reduce to those already given at n. 4 as
o JE 0

For a continuous structure, we must solve the
differential system:

2 2
i S L +o§—§- wlpw = 0
dx? dx?
(36)
= (E1 g—éd Y gﬁ-— wzuk =0
dx? ax?

with the pertinent initial and final, boundary and
transversality condition. An excellent paper by
Weishaar [4] deals with this problem for a simply
supported sandwich panel; although not proved, it
is very likely that the optimum thickness should
be symmetrical, although the mode is not.

Figs. 16, 17, give the results of the calcu-
lations on the same problem by the present method.
It is seen that there is a rather large discrepan-
cy, due probably to some instability effects of the
integration method used by us. The correction of
the program is now under completion, to adapt it
also to two-dimensional cases.

7. MULTIDIMENSIONAL STRUCTURES :_
FINITE ELEMENTS TECHNIQUE.

To apply the shooting technique to multidimen-
sional structures, one has to establish a "starting
front" and walk in a direction transverse to such
front until one reaches the final front where the
boundary conditions are to be checked. This can be
rather difficult for generic shapes of boundary;
therefore, a careful selection of the elements and
of gridpoints can help very much in a substantially
improved technicue. No general rules can be given
in this context, but simply one has to rely upon the
ingenuity and the ability of the analyst.

In any case, transversal boundary conditions may
change a little the technique as described in the
previous Articles. Let us consider, for example, the
structure of Fig. 18, i.e., a rectangular plate,
formed by rectangular panels, each of constant thick-
ness, with vibrating masses at the gridpoints. We
want to generalize, to the two-dimensional case,
the one-~dimensional case of Art. 4, i.e., the mini-
mum weight plate of a given frequency.

We firstly note, Fig. 19, that finite element
technique provides for each panel a matrix depending
on the panel thickness, which relates corner. forces
with corner displacements. Furthermore, the compo-
nents of the Hamiltonian vector relative to the
panel under concern will depend on the panel thick-
ness and on the set of (Fig. 19) the displacements
at the panel corners. However, we cannot eliminate
the quantities at the (k+l1)th row, as done in
the examples of Art. 4, since the equations of equi-
librium of the single panels and masses are not inde-
pendent, and, furthermore, also the lateral boundary
conditions must be considered. In this case, we
have to use a successive approximatiors method. We
give a first try or guess approximation for the va-
rious thicknesses of the k-th row of panels Fig. 19;
then, since all the displacements at the k-th row
are known, a very simple linear problem allows to
go one row ahead, since boundary conditions and
A and B are prescribed. Now we can enter the opti-
mality equations, and correct for the initial gquess
thickness - distribution, and so on. For a continuous
plate, the Hamiltonian reads:

Hix,y) = u(x,y) - o2plu(x,v)1w? +

F2+ F2 - 2F F v +2(1-v)F2
X Y Xy Xy

% DTu(®, 311 (37)

Here we have to choose, as shooting quantities
the values of dw/3dx , 33w/8x3 (if, £.i. , the
plates are simply supported at x = 0 , so there
we know w = 0; Bzw/Z)x2 = 0) , which are functions
of y only, and walk in the x-direction (Fig. 20).
At every step Ax (Fig. 21), we have to solve the
problem of minimizing (37) for all F,, F,, which
can be obtained by solving the variable—tgickness
plate equation when four quantities are given on the
sides PQ, and two quantitites each at the sides
MP, NQ. Check of boundary condition, and updating
of the shooted quantities is performed at the x = a
edge of Fig. 20.

It is obvious, however, that the optimum struc-
ture will come out of a judicious choice of the
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3 3
elements and of the adequate representation. (i3 EI (d Qi) C(ij) EI (d Pi)
e 7 e
3 423 = 3 agd &L,
Furthermore, it is clear that constraints are < dag £ Ej " 3
more important than optimality. In other words, if (5)
an “optimum® structure is difficult, one can con- i azp, . 4 azp,
Sy inch . = pa 3 (ij) EI i (ij) _ EI i
mself with a "very good" one, provided that, n === { ) iTe = (W)
however, structural consistency is assured. For L3 ag? €=5j vL3 dE? E=f .
this purpose, it is very important to have an ef- :

ficient method of calculating frequencies of a gi-
ven structure. Our Institute has gained consider- (i,3=0,1)
able experience in this area, by applying very

sophisticated programs (such as f.i., NASTRAN) to W M.

very sophisticated structure. A typical example,

the Spoot Beam Antenna, built by the Italian socie- 1 (00) (10) (00) (10)

ty "SELENIA"; our Institute has performed the bR iy + Hy® LA ¢1C 6
structural analysis, by using the model of Fig. 22 w

and obtaining results in excellent agreement with oy (01) (11) (01)
experimental results. The author's opinion is that 1 woe le ® ¢oc ¢l
this is a very efficient tool as an intermediate,

often repeated step in structural optimization.

C(ll)

(10)
. (00) (10) (00)
APPENDIX Ty T i 9,8 30 A
Consider Eq. (32) valid in the range v (01) (11) (01) (11)
0 < x < L, with the end conditions: Fl B L =4 ¢oe & ¢le
W= W=, ‘
20 T (1) The same relationships hold, of course, also
f for the generic k-th span of the structure of
dw _ ¢ aw _ 0 Fig. 3, when wp =Wy ; W] = W, ; 9o = ¢k ;
dx [} dx 1 ¢ = ¢x+1, and the proper value of
e .
. ] ot ; Vi oLk/EIk has been introduced.
Letting Vv’ = —— , we may write:

EI

’

SYMBOLS
¢o ¢l

w(f) = w (8) = e
OQO : +lel(€) o PO(E) Ji Pl(a) j » rotary inertia per unit length
u > thickness
h _ X a (2) w > flexural displacement
FEENC VI AP x,y coordinates of plate or beam vr rod
2 . A > structural matrix
- ¢C(€)¢b(l) i ¢b(5)¢c(l) B - torsional stiffness
QO(E)_ " A 2 Ql(a) » l—Qo(E) D ~» flexural stiffness of plate
E » modulus of elasticity
B> element
P (E) = $(E) + &(l) ¢b(€)¢c(l) ¥ ¢c(€)¢b(l) 3 )i bepding moment'
o A G > stiffness matrix
H > Hamiltonian
¢C(E)$b(l) = ¢b(€)$c(l) I -~ moment of inertia of beam section
+ $(1) - L + element length
T o5 aeroelastic matrix
M > mass matrix, or single mass
¢b(l)¢c(€) = ¢c(l)¢b(5) N > number of elements
.P. (&) v (3) P + compressive load
* ’ R > number of constraints
vE £ number of parameters
A T torque
2 (&) =e? sen(—"tﬁ‘z’ ) = /—g $E) s wiE) =1 - e VE i U e e
£ U > thickness vector
a2 Vv > Eg. (21)
¢ (E)= ‘%'w(i) "L T cos(gégg) -1; () = géEL W > state vectoF ney
g end constraint rigidity

€,L,n,0 > coefficients (see Appendix)

angle of rotation {(Art. 4)

Lagrange multiplier

Lagrange multiplier or mass per unit of length
JG/EI, or Poisson's ratio

dynamic pressure-parameter

flexural rotation

weigth of element

Eq. (11)

given or ungiven parameter

A= (D M) - oglih, M)

From Eq. (2) we can calculate shears and ben-
ding moments at the end of the bar. Letting:

E€EX S QCTE »@
AT 20 2 2 2 2 4

1
“
=1}



Eg. (3)

total weight
summing vector
potential energy

L L A

ol e == =2

Subscripts

h,k, j>number of order of the element
r »> number of order of constraints
a > augmented

X,y > in the x or y direction

Superscripts

' = minimum
n —-

= maximum
T = transfer of a vector or matrix
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DISCUSSION

J. Solvey (Reronautical Research Laboratories,
Melbourne, Australia): If this procedure refers
to mono-tonically changing parameters, how do you
treat the change in case of step-function?

P. Santini and R. Barboni: In effect the method
deals with finite changes of the parameter.
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FIG.4 OPTIMUM TQTAL WEIGHT (t1) FOR THE STRUCTURE OF FIG.J.
=115 THE NON OPTIMAL GONSTANT THICKNESS.
maxU, = MAXIMUM THICKNESS . x"= TRANSITION FOINT _
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FIG.6  OPTIMUM TOTAL WEIGHT (11)AND TRANSITION POINTS FOR THE
STRUCTURE OF FIG.5.

courtesy"L'AEROTECNICA MISSILI E SPAZIO"



) i
- u'=10 | 1
) 1 '
iu._ ‘ a:\\\ [ ' I T ] . ’/im
< X
] ﬁ v'L =1 \\L i | ,/ _ls
1 u'=.6 | P i L4 H
,5' I '\\\ | -/ |
" e | { =Ll | T
o N N I p B S I, STl 1221 e O O
i ‘ | i EN R i I -//x/ ~ |
o | | J | J ! x al ' | M i 1 | i | 7’.;_,/——1-—_1‘
g 2 E) a s s EZ ] 1w | J" /‘,’ f [ | 1/ i
3 | ox
06 7 OPUMUM THICKNESS DISTRIBUTION OF FIXED -FREE VIBRATNG ROD otE: : 1 4 3 4L' /F/i/ 7 l D vlo"
(B=U: =1+l w=2¥E; y=1) '

FIG.8  OPTIMUM TOTAL WEIGHT ¢ #/) AND TRANSITION POINTS FOR THE
STRUCTURE OF FI57.
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FIG10 OPTIMUM THICKNESS DISTRBUTION FOR SBAPLY
SUPPORTED EULER'S COLUMN -
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FI6. 11 MAXIMAL THICKNESS (MAX U) AND OPTIMAL WEIGHT FOR THE a4 I e e
STRUCTURE OF FIG.10_ :

FIG 12 OPTIMUM THICKNESS DISTRIBUTION FOR SIMPLY SUPPORTED
EULER'S COLUMN_[E12U ; 4«20 ; P=7\(gs.(27); u=01]



559




FIG. 22

X

~ FI6. 21

560

e



